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IMPROVEMENT OF NAKAMULA'S UPPER BOUND 
FOR THE ABSOLUTE DISCRIMINANT OF A SEXTIC 

NUMBER FIELD WITH TWO REAL CONJUGATES 

R. J. STROEKER 

ABSTRACT. Let K be the compositum of a real quadratic number field K2 and 
a complex cubic number field K3 . Further, let e be a unit of K which is also 
a relative unit with respect to K/K2 and K/K3. The absolute discriminant 
of this non-Galois sextic number field K is estimated from above by a simple, 
strictly increasing, polynomial function of e . This estimate, which can be used 
to determine a generator for the cyclic group of relative units, substantially 
improves a similar bound due to Nakamula. The method employed makes 
nontrivial use of computer algebra techniques. 

1. INTRODUCTION 

In his beautiful paper [2], Nakamula shows great arithmetic skills in the way 
he calculates fundamental units and class numbers of number fields of absolute 
degree 6 over Q. In the paper cited, Nakamula considers sextic fields K with a 
real quadratic subfield K2 and a complex cubic subfield K3 . Or rather, take any 
quadratic extension K2 of Q of discriminant d2 > 0 and any cubic extension 
K3 of Q of discriminant d3 < 0; then the compositum K := K2 * K3 is a 
non-Galois sextic field of positive absolute discriminant D. Consider K to be 
embedded in the reals R. 

It is the unit structure of K that interests us. As the torsion subgroup of the 
unit group is trivial, it is sufficient to consider only the group E of positive 
units of K. Let H be its subgroup of relative units with respect to K2 and 
K3 , that is, 

(1) H:= {c E E NormK/K2(c) = NormK/K3(c) = 1}. 

Both free unit groups E2 and E3 of positive units of K2 and K3, respectively, 
have rank 1, and E has rank 3, by Dirichlet's unit theorem. Consequently, H 
is an infinite cyclic group. One of the main points of Nakamula's paper is to 
give an effective way of calculating the three generators of the free unit group 
E, and he succeeds in doing this by expressing the generators of E in terms of 
the generators of E2, E3, and H. 

Assuming that generators for E2 and E3 have been found, we concentrate 
on H. 
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Let e E H, e > 1, be given. To ensure that e generates H, is is sufficient 
to check that a relation of the form 

(2) e = fora EHandnENwithn>2 

is impossible. In order to do this, suppose that a strictly increasing function 
T: R+ -* R+ exists such that for each 4 E H the inequality D(4) < T(4) holds, 
where D(4) is the discriminant of 4 with respect to K/Q. If the inverse T-1 
of T can be explicitly evaluated at each relevant value, then a useful upper 
bound for the exponent n in (2) can be obtained as follows. Let D be the 
absolute discriminant of K. As e > 1, it follows from (2) that 

O < D < D(4) = D( C ) < T(Ce ), 

which implies n < log c/log T- I(D), provided D > T(1). In Lemma 2 of [2] 
the author uses the function 

T(x) := 16((x + 9)7 - 290)2, 

to prove (see Theorem 1 of [2]) 

Theorem 1 (Nakamula). Let c and n be as in (2). Then 

n < B(.c) := loge 

log -P/4 290 -9/7) 

Although his result is correct, Nakamula's proof contains some misprints (see 
?3) and besides, the argument is not sufficiently transparent to enable the reader 
to make the necessary adjustments. The object of the present paper is to give 
a different proof, making extensive use of computer algebra methods-in fact 
the Macintosh SE implementation of Maple, version 4.2.1 (see [1]) is used-of 
the following theorem: 

Theorem 2. Let e and n be as in (2). Then 

n < h(-C) := loge 

log JP/4? 76- 6/7) 

It is an easy exercise to show that the upper bound B(c) improves Naka- 
mula's bound B(-c). Indeed, on putting 

A := 'i/4/4?+76 and ,:= u4+290, 

it follows that A > 2 and u > 94, as the smallest possible discriminant D equals 
66125 (see [2, p. 244]). Application of these inequalities yields 

6 2685817 
214=u7 7 _ u7 = A)ZuiA6-i > (Cu A-) 4096 

i=O 

and hence ,u - A. < 4, from which the assertion immediately follows. 
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The real improvement of B(c) over B(e) lies in the reduction of the fraction 
9 to 6 . How substantial this improvement can be for relatively small discrimi- 7 7. 
nants is clear from the table in ?5. For large discriminants it is not immediately 
clear whether B(s) always induces a better integer bound than B(c). 

2. THE DISCRIMINANT OF A RELATIVE UNIT 

Let e be a relative unit, that is, e E H as in (1). If the conjugates of e with 
respect to K/K3 are e and c', then sc' = 1, and hence c' = -1 . This shows 
that we may assume e > 1, which we shall do from now on. With respect to 
K/K2, let c, c", and c"' be the conjugates of e, so that ce"C"' = 1. As K3 
is not totally real, c" and c"' are complex conjugates. All this implies that the 
field conjugates of c are 

1 1 1 
(3) e, -, V/exp(ib), -exp(ib), Viexp(-i0), -exp(-ib), 

for some b with 0 < b < 7i. Further, let 0 TrK/K3(6), 0" := TrK/K3(6e 
and let 0"' be the complex conjugate of 0". Then 

(x2 - Ox + 1)(X2 _ 0",x + 1)(X2 _ 0"'Ix + 1) 

= (4)x6 sx5 + tx4 UX3 + tX2 _ sx + 1, 

with s, t, u E Z, is the form of the minimal polynomial of e over Q. On 
setting 

(5) a := +/i+ 1/, 
we deduce from (3) and (4) that 

s = 0 + 2a cos , 
(6) t = 1 + O(1 + s - 0) + a-2(s _ 0)2. 

A relation between s, t, and u is quickly established as follows. On putting 
a: TrK/K2 (e) and a' TrK/K2 ('), we find that the minimal polynomial of e 
is also given by 

(x3 -ax2 + a'x - 1)(x3 - a/x2 + ax - 1), 

so that 
s = a + a, t = a + a +?aa', u=2+a 2+ a2 

from which we immediately deduce the relation u = s2 + 2s - 2t + 2. Hence, 
the minimal polynomial of e is 

(7) x 6_sx5+tx4-(s2+2s-2t+2)x3+tx2-sx+ 1, s, teZ. 
Finally, it is now rather easy to express the discriminant D(e) with respect 

to K/Q in terms of e and q. If 

(8) F(x) := (a3 - 3a - x)2(a - x)3(a + x)(4 - x2), x E R, 

then we have 

(9) D(e _ ( -1)(a - 2)F(2 cos 0). 

Note that D(e) > 0, as K = Q(e) has an even number of complex conjugate 
pairs. Because of (9), it goes without saying that we are only interested in the 
range (-2, 2) of arguments of the function F . 
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If for all a > 2, UF(a) is an upper bound for the function F on (-2, 2), 
then 

(10) <D() ? aUF(a) (a2 - 4)3. 

Hence, in order to find an upper bound for the discriminant D(e) in terms of 
e or a, it is sufficient to find one for the function F on the interval (-2, 2). 

3. UPPER BOUND FOR THE FUNCTION F 

The function F is a polynomial in x of degree 8, the coefficients of which 
are polynomials in a. Hence, solving F'(x) = 0 analytically-in order to find 
stationary points-is either trivial (which is not the case here) or impossible, 
the more so because a parameter a is involved. Now Nakamula in the paper 
cited gets around this problem by estimating the stationary point in terms of a. 
However, the phrase "after a tedious calculation" does not give any insight into 
what really happens. Moreover, there are a few misprints in the proof. To be 
more precise, on p. 231 of [2], the constant term in the definition of A3 should 
be - 104 instead of - 108, and the coefficient of y-3 in the closing line should 
be +1280 instead of -1280. We shall proceed in a different way. 

First of all, as a > 2 and hence a3 - 3a > 2, the function F does not vanish 
on the interval (-2, 2). Further, as F(O) > 0, F must have a unique and 
positive maximum MF(a) at x = x(a) on (-2, 2) for all a > 2. 

The general approach we plan to adopt, and which ultimately leads to an 
upper bound for MF, may be described as follows. 

Main procedure. For every x-interval I c (-2, 2) containing x(a) and on 
which F is a concave function, the graph of F lies entirely below the tangent 
to the graph at any point with x-coordinate belonging to I. Now take two 
points in I, one to the left and one to the right of x(a). Then the tangents to 
the graph of F at the corresponding points on the graph intersect in a point 
with x-coordinate > MF i 

So we have to determine a suitable subinterval I of (-2, 2) and suitable 
points sufficiently close to x(a) to the left and right of x(a) to make the process 
work. By inspection, F'(- 1) > 0 and F'(-2) < 0 (see the list of F'-values in 
[3]), so that x(a) belongs to the interval (-1, -2) for all a > 2. However, 
as limaO,F'(-1)/a10 = 2 and limaO,,F'(-2)/a10 = 0, the value -1 is a 
rather bad choice for large values of a; the left endpoint -a4 apparently is 
a better choice. Unfortunately, for values of a close to 2, the function F is 
not concave on the corresponding interval (-4, - 2). For instance, if a = 2 
and -2 < x < -1-I - 21/, then F"(x) > 0. As the sign of F" cannot 
be determined by mere inspection, we proceed by attempting to locate all real 
zeros of this polynomial function. As it turns out, all six zeros of F" are real, 
amongst which the simple zero x = a. Now, by determining all sign changes, 
we shall know approximately where F" takes negative values. Let F be the 
polynomial of degree 5 over R with 

F(x)=F(x) for x a. 
a -x 

Clearly, the leading coefficient of F(x) is -1, and our table of signs indicates 
that F does not change sign on the intervals (-1, - a) and (-~ a,-2) .Ined 
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The sign of the function F 

s(x) :=signofF(x);p(a) := 3a3 -a2+a-2 

x -oo < -1 and _ 3 2 a a p(a) < oc 

s (x) + + 

the position of every one of the five zeros of F is accounted for outside these 
intervals. Note that 

max(- ) < -_ < a < a <p(a) = a3 -a2 +a-2 

for a > 2. 
It is not easy to prove that the sign of F(x) at each of the six given x-values 

of the table is as indicated. The reason is that for certain rational functions 
of a it needs to be established that no sign change occurs as a ranges through 
(2, o0). Here the power of symbolic computation is needed for the first time. 
What we do is this. We simply substitute in F(x) for x the relevant value 
expressed in terms of a, followed by the substitution of a = b + 2. Of the 
resulting rational function of b, the numerator decides its sign, as the denomi- 
nator is trivially positive for b > 0. As it turns out, all nonzero coefficients are 
of equal sign, so that no sign change occurs in the range b > 0. The explicit 
polynomials are printed in [3]. 

The following lemma now easily follows. 

Lemma. Let F, defined as in (8), attain its unique maximum at x(a) E (-2, 2). 
Further, let I3(a) 3(-a -2 ) and I4(a) := (-2,). Then 

(i) x(a) E I3(a) and F is concave on I3(a) if 2< a <4, 
(ii) x(a) E 14(a) and F is concave on I4(a) if a > 4. 

The concavity of the function F in both cases has been established above. 
To show that x(a) belongs to the relevant interval, it is sufficient to prove that 
Fl(-3) > 0 if 2 < a < 4 and F'(- 4) > 0 if a > 4, as we already know that 
F'(-2) < 0. These assertions follow from the F'-values as given in [3]. Note 
that F'(- 3) > 0 in the range a > 2 only if a8 - 32a6 + 174a 4-378a 2+324 < 0, 
and the positive real zeros of this polynomial are 1.61662706 and 5.07997821, 
approximately. 

To continue the main process, select I = I3(a) or I = I4(a), and calculate 
an upper bound UF (a) for F on I by intersecting the tangents to the graph of 
F at the points corresponding to the endpoints of I. It is clear that UF (a) is 
a rational function of a. Note that, owing to the choice of endpoints, UF(a) 
is in fact a rational function of a2. In the next section we shall construct an 
upper bound for D(c) by means of (10), for both choices of I. 

4. SYMBOLIC COMPUTATIONS 

In this section we shall finalize the proof of Theorem 2 by manipulating 
polynomials with large rational coefficients and of rather high degree. Explicit 
information, iincling Maple programs, is provided in [3]. 
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The right-hand side of inequality (10) is not a rational function of a. To 
restore rationality, we substitute for a the expression c + c- ; in fact we have 
c := +/, and then a = c + c-l by (5). Note that c > 1 by assumption. Next 
we define polynomials P, Q E Z[c] by 

P(C) := UF(C + C 1)(C + C1)(C -C'), 
Q(C) 

where the fraction is normalized. Then (10) yields 

P (c) 

As UF(a) is a rational function in the variable a2, both P(c) and Q(c) are 
polynomials in c2 . For both choices of interval I (see Lemma), the denomi- 
nator Q(c) has nonnegative integer coefficients, so that by the Euclidean algo- 
rithm, 

P(c) = M(c) + R(c) 
Q (c) T 

with M, R E Z[c] and deg(R) < deg(Q); it follows that for all c > 1 

( 11) Q( c) < M(c) + dI < aM(c2 + d2)deg(M)/2 + d3, 

for suitable constants d1, d2, and d3 . Here, aM denotes the leading coefficient 
of M(c). Our object is now to choose both d2 and d3 minimal, subject to 
inequality (1 1). 

First case: I3(a). In case I = I3(a) (-i, a) we have the polynomials 

P(c) = 4c74 + 150c72 + 2370c7? + 207 18c68 +... 

Q(c) = c60 + 32c58 + 420c56 + 2996c54 +... 

Next consider (see ( 11)) 

(12) V(c) := -P(c) + Q(c)(4(c2 + d2)7 + d3) = (28d2 - 22)c72 + 

The best possible choice for d2 is such that the leading coefficient of V(c) 
vanishes, i.e., d2 = 1. Next substitute c = 1 + b in the resulting expression 
for V(c) and choose d3 minimal and such that all coefficients of V(l + b) as 
polynomials in b are nonnegative. The optimal choice is now 

= _6103515625 = -231.602... 26353376 

which is obtained by setting V(1) = 0, corresponding to b _ 0. Then 

V(1 + b) = 461 70 69 + 15805277b68+ 184087458b67+ 
-b70+606+ 98 49 

the coefficients of which can have numerators as large as 1030. In [3] all coef- 
ficients of this polynomial are given. 

The final inequality is 

(13) P(c) <I a2 I { )R27 1 
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which is true for all c with 1 < c < 2 + /3, as 2 < a < 4. 

Second case: I4(a). Now we have I = I4(a) = (-4, - 2), and the correspond- 
ing polynomials are 

P(c) = 4c70 + 172c68 + 3084c66 + 30308c64 + ... 

Q(c) = C56 + 37c54 + 553C52 + 4453c50 + ... 

As before (see (12)), 

V(c) := -P(c) + Q(c)(4(c2 + d2)7 + d3) = (28d2 - 24)c68 + ... 

and here the best choice for d2 is 6 . Again, substitute c = 1 +b in the resulting 
expression for V(c) and choose d3 such that all coefficients of V(1 + b) are 
nonnegative. The optimal choice is 

d3 = -82354?3 = -304.773 ... 

which again is obtained by setting V(1) = 0. Then 

V( 1+ b)- =544 b66+ 35904 b65 + 8322392 b64+ 184124928 b63 
7 7 49 49 

As in the first case, the coefficients can have very large numerators. See [3] for 
full information. 

The result is that 

P(c) (2 6 7 
(14) Q(c) <4 c +7) - 304, 

for all c > 2 + V'3, because here a > 4. 
It remains to combine both inequalities (13) and (14) and create a single 

inequality valid for all values of a > 2. This is a straightforward matter. From 

(c2 + -)7 - (c2(+ )= )7 (25+ ) 7 
n=O 

it follows that for all c > 1 

4 (c 2 + - - 304 > 4 (c2 + - 231 . 

Hence, for all a > 2 

D < D(8) < 16 ((c2 + )7 - 76) 

and Theorem 2 immediately follows. 

5. COMPARISON OF BOUNDS 

In this final section we shall give examples to demonstrate the extent to which 
the bound B(c) is an improvement of B(c), the one given by Nakamula in [2]. 
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Comparing B(E) and B(E) 

E has minimal polynomial (7) with parameters s and t, 

1.2(3) is short for 1.2 x103 

D, D2 and D3 are the discriminants of K, K2 and K3 

Entry ni in column 1 corresponds to Table n, line i, 

and (*) corresponds to Example 7.2.(iii) of [2] 

[2] s t D D2 -D3 e B(E) B(E) 

37 -1 -9 1760913 33 231 3.4(0) 6.2 3.0 
33 -1 -8 390224 29 116 3.3(0) 11.9 4.3 
23 -1 -6 7260624 21 588 2.9(0) 3.3 2.0 
32 -1 -4 140608 13 104 2.4(0) 16.9 4.4 
325 0 -2 1782272 8 472 2.2(0) 4.0 2.0 
39 1 -14 3631696 61 244 5.1(0) 6.3 3.4 
31 1 -6 219501 29 87 3.8(0) 18.9 5.7 
312 1 -3 1105425 17 255 3.2(0) 7.0 3.1 
21 1 0 450000 5 300 2.1(0) 7.0 2.6 
323 2 -37 7744000 40 440 8.0(0) 6.3 3.8 
27 2 -9 4320000 12 300 5.0(0) 5.8 3.3 
34 2 -5 184832 8 152 4.3(0) 22.9 6.6 
35 5 -2 2382032 53 212 6.3(0) 8.3 4.2 
320 7 -8 20720464 109 436 8.9(0) 5.1 3.4 
316 10 -78 12986073 113 339 1.6(1) 7.3 4.6 
319 19 96 9528128 53 424 1.3(1) 7.2 4.5 
36 22 -193 1120581 21 231 3.0(1) 20.4 9.2 
3jo 22 -65 793117 13 247 2.6(1) 22.8 9.6 
318 22 6 23142177 137 411 2.3(1) 7.1 4.8 
311 22 63 325125 5 255 2.0(1) 33.2 11.3 
321 23 124 968000 5 440 1.7(1) 18.1 8.0 
38 25 162 4108797 77 231 1.6(1) 10.3 5.8 
2jo 28 191 69574032 33 1452 1.9(1) 5.3 3.9 
324 30 -401 8339441 41 451 4.1(1) 11.0 6.7 
(*) 38 319 66125 5 23 2.8(1) 122.8 21.2 
22 42 375 559872 12 108 3.1(1) 28.6 11.2 
313 49 458 5527125 85 255 3.8(1) 12.2 7.1 
314 81 -486 11655261 109 327 8.8(1) 12.1 7.6 
315 86 -65 561125 5 335 8.8(1) 37.2 14.6 
317 110 -2561 11279504 89 356 1.3(2) 13.3 8.4 
24 141 -3090 2278125 5 675 1.6(2) 23.1 11.8 
25 142 2735 12778713 17 867 1.2(2) 12.6 8.0 
26 158 2751 66854673 57 1083 1.4(2) 8.9 6.5 
322 266 -9893 1548800 8 440 3.0(2) 30.1 14.4 
29 1581 -111810 36756909 21 1323 1.6(3) 15.1 10.6 
28 1666 59015 21600000 60 300 1.6(3) 17.0 11.4 
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It seems fair to choose examples similar to those provided there. In fact, we 
have chosen exactly the same (s, t)-values as those offered in the examples and 
in Tables 2 and 3 of the paper cited. The first column of the table gives a 
reference to Nakamula's tables and examples. We noticed a couple of misprints 
in these tables: the first entry of the second line of Table 2 should be 80 instead 
of 60 and the third entry of line 4 of Table 3 should be -8 and not 8. 
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